Difference representation of one binomial expansion.

$$
(\sqrt{2}-1)^{n}=\sqrt{m}-\sqrt{m-1}
$$

https://www.linkedin.com/groups/8313943/8313943-6421211852029591552
Show that every positive integral power of $\sqrt{2}-1$ is of the form $\sqrt{m}-\sqrt{m-1}$.
Solution by Arkady Alt, San Jose, California, USA.
We intend not only to prove that $(\sqrt{2}-1)^{n}$ for any $n \in \mathbb{N}$ can be represented in the form $\sqrt{m_{n}}-\sqrt{m_{n}-1}$, where $m_{n} \in \mathbb{N}$ but also to define m_{n} recursively.

For any $n \in \mathbb{N}$ let a_{n} and b_{n} be positive and negative parts of binomial expansion of $(\sqrt{2}-1)^{n}$. We will prove that $a_{n}^{2}, b_{n}^{2} \in \mathbb{N}$ and $a_{n}^{2}-b_{n}^{2}=1$ for any $n \in \mathbb{N}$ and we thereby prove that $(\sqrt{2}-1)^{n}=\sqrt{m_{n}}-\sqrt{m_{n}-1}$, where $m_{n}=a_{n}^{2} \in \mathbb{N}$.

Since $(\sqrt{2}-1)^{n+1}=(\sqrt{2}-1)(\sqrt{2}-1)^{n}=(\sqrt{2}-1)\left(a_{n}-b_{n}\right)=$
$\sqrt{2} a_{n}+b_{n}-\left(a_{n}+\sqrt{2} b_{n}\right)$ we obtain $\left\{\begin{array}{l}a_{n+1}=\sqrt{2} a_{n}+b_{n} \\ b_{n+1}=a_{n}+\sqrt{2} b_{n}\end{array}, n \in \mathbb{N}\right.$,
where $a_{1}=\sqrt{2}, b_{1}=1$.
Also, we can set $a_{0}:=1, b_{0}:=0$ since $(\sqrt{2}-1)^{0}=1=1-0$
Since $b_{n}=a_{n+1}-\sqrt{2} a_{n}$ for any $n \in \mathbb{N}$ then $b_{n+1}=a_{n}+\sqrt{2} b_{n}$ becomes

$$
\begin{aligned}
& a_{n+2}-\sqrt{2} a_{n+1}=a_{n}+\sqrt{2}\left(a_{n+1}-\sqrt{2} a_{n}\right) \Longleftrightarrow \\
& a_{n+2}-2 \sqrt{2} a_{n+1}+a_{n}=0, n \in \mathbb{N} \cup\{0\} \Longleftrightarrow
\end{aligned}
$$

$$
\text { (1) } a_{n+1}-2 \sqrt{2} a_{n}+a_{n-1}=0, n \in \mathbb{N}
$$

Thus, a_{n} is defined in $\mathbb{N} \cup\{0\}$ by recurrence (1) with initial conditions $a_{0}=1, a_{1}=\sqrt{2}$.

Since $a_{n+1}^{2}-a_{n+2} a_{n}=a_{n+1}\left(2 \sqrt{2} a_{n}-a_{n-1}\right)-\left(2 \sqrt{2} a_{n+1}-a_{n}\right) a_{n}=$

$$
a_{n}^{2}-a_{n+1} a_{n-1}, n \in \mathbb{N} \text { and } a_{2}=3 \text { then }
$$

$$
a_{n}^{2}-a_{n+1} a_{n-1}=a_{1}^{2}-a_{2} a_{0}=2-3=-1, n \in \mathbb{N}
$$

Hence, $a_{n+1} a_{n-1}=a_{n}^{2}+1, n \in \mathbb{N}$ and noting that

$$
\left(a_{n+1}+a_{n-1}\right)^{2}=\left(2 \sqrt{2} a_{n}\right)^{2} \Longleftrightarrow a_{n+1}^{2}+a_{n-1}^{2}+2 a_{n+1} a_{n-1}=8 a_{n}^{2}
$$

we obtain
$a_{n+1}^{2}+a_{n-1}^{2}+2 a_{n}^{2}+2=8 a_{n}^{2} \Longleftrightarrow a_{n+1}^{2}-6 a_{n}^{2}+a_{n-1}^{2}=-2, n \in \mathbb{N}$
and since $a_{0}^{2}=1, a_{1}^{2}=2$ this immediately implies that $a_{n}^{2} \in \mathbb{N}$.
By the similar way, since $b_{n+1}-2 \sqrt{2} b_{n}+b_{n-1}=0, n \in \mathbb{N}$ and $b_{0}=0, b_{1}=1$
we obtain $b_{n}^{2}-b_{n+1} b_{n-1}=b_{1}^{2}-b_{2} b_{0}=1 \Longleftrightarrow b_{n+1} b_{n-1}=b_{n}^{2}-1$ and, therefore, $b_{n+1}^{2}-6 b_{n}^{2}+b_{n-1}^{2}=2, n \in \mathbb{N}$ and this immediately implies that $b_{n}^{2} \in \mathbb{N}$. Since $a_{0}^{2}-b_{0}^{2}=1, a_{1}^{2}-b_{1}^{2}=1$ and for any $n \in \mathbb{N}$, assuming $a_{n-1}^{2}-b_{n-1}^{2}=$ $a_{n}^{2}-b_{n}^{2}=1$, we obtain $a_{n+1}^{2}-b_{n+1}^{2}=6\left(a_{n}^{2}-b_{n}^{2}\right)-\left(a_{n-1}^{2}-b_{n-1}^{2}\right)-4=6-1-4=$ 1 then, by Math Induction, $a_{n}^{2}-b_{n}^{2}=1$ for any $n \in \mathbb{N} \cup\{0\}$.

Thus, $(\sqrt{2}-1)^{n}=\sqrt{m_{n}}-\sqrt{m_{n}-1}$, where $m_{n+1}=6 m_{n}-m_{n-1}-2, n \in$ \mathbb{N} and $m_{0}=1, m_{1}=2$.

